top of page
Screenshot 2024-07-20 alle 10_edited.png

INTERVENTIONS

Transcatheter ablation using radiofrequency is a procedure that allows the treatment of many arrhythmias and consists in the elimination of the foci or abnormal electrical pathways that are responsible for the arrhythmia itself. The ablation is performed after the electrophysiological study and, in most cases, is performed in the same session. There are different ablation techniques. The main ablation techniques are two, the conventional one in which the catheters are guided inside the heart under the sole control of X-rays and the one with a navigation system that allows the three-dimensional (3D) reconstruction of the heart chambers with a significant reduction in the use of X-rays and greater precision in the localization of the catheters inside the heart compared to the conventional technique. We have different energy sources available to perform the ablation, radiofrequency, cryoenergy (mainly used for pericardial cases) and laser. The complexity and effectiveness of the ablation varies for each type of arrhythmia. We therefore move from relatively simple ablations with a high success rate such as the ablation of paroxysmal supraventricular tachycardias, to ablations with intermediate complexity such as ablations for atrial fibrillation and atrial tachycardias to complex ablations such as ablations for ventricular tachycardias.

Transcatheter epicardial ablation using radiofrequency is a procedure that allows the treatment of many arrhythmias and consists in the elimination of complex arrhythmias often localized in the ventricles (mainly left). The ablation is performed after the electrophysiological study and in most cases is performed in the same session. In the case in which the arrhythmia is localized on the epicardial surface (i.e. the outermost part of the heart, its surface) an epicardial approach is necessary to reach the site to be treated. The procedure must be performed under general anesthesia because it is necessary to obtain access to the epicardium by percutaneous subxiphoid access (puncture under the sternum with a special needle and insertion of a small tube) or surgically with the creation of a subxiphoid window (small incision of 4 cm under the sternum).

Lo studio elettrofisiologico endocavitario è un esame che studia il sistema elettrico del cuore, l’origine e la conduzione degli impulsi elettrici che permettono al cuore di contrarsi e di svolgere la propria funzione. Quando il sistema elettrico del cuore presenta delle anomalie, si verificano delle aritmie cardiache, che possono manifestarsi con un battito troppo accelerato o troppo lento o irregolare, causando sintomi quali palpitazioni, difficoltà nel respiro, vertigini, perdita di coscienza. Le aritmie cardiache possono essere causate da diversi meccanismi: presenza di una via elettrica anomala o di un circuito elettrico o di un focolaio che scarica impulsi ad alta frequenza o di impulsi disorganizzati che fanno contrarre il cuore in maniera rapida ed irregolare oppure da un cattivo funzionamento delle strutture da cui originano gli impulsi elettrici “normali” o sinusali quali il nodo del seno o il nodo atrio-ventricolare. Le aritmie inoltre possono essere generate in diverse sedi del cuore. Lo studio elettrofisiologico endocavitario consente la diagnosi precisa del meccanismo e della sede dell’aritmia e rappresenta la base per un corretto trattamento.

If you have an episode of symptomatic atrial fibrillation that does not respond to antiarrhythmic medications, your doctor may suggest a procedure called electrical cardioversion, which is designed to return your heart to a normal rhythm (sinus rhythm). This procedure is usually scheduled in advance and involves delivering a controlled electrical shock to your heart. The electrical impulse is strong enough to briefly stop the heart’s electrical signals and allows the heart’s natural pacemaker, the “sinoatrial node,” to resume normal activity and restore normal sinus rhythm. Electrical cardioversion is performed in a hospital using a machine called a defibrillator. Before cardioversion, you will be given an injection (anesthetic) that makes you drowsy because the procedure can be slightly uncomfortable. This way, you will not feel anything during the procedure. It is important to be aware that even after successful cardioversion (which returns your heart rhythm to normal sinus rhythm), atrial fibrillation may return. This happens in about half of patients during the first year after the cardioversion procedure. The chances of atrial fibrillation returning depend on many factors, but are higher if you have other heart problems (including high blood pressure) and if you have had atrial fibrillation for more than 1 year. Cardioversion can also be achieved with certain medications used to control the rhythm. This is called pharmacological cardioversion because instead of an electrical shock, medications are used to try to get the heart to return to a normal rhythm. This procedure is also done in a hospital. You will be given this medication through an IV in your arm, and your heart rate will be monitored continuously during the procedure. Before cardioversion, whether electrical or pharmacological, you will need to take a blood thinner for at least 1 month before the procedure. Alternatively, a transesophageal echocardiogram will be done to rule out the possibility of blood clots in the heart before cardioversion. To reduce the risk of stroke, you will need to continue taking the blood-thinning medicine for at least 2 months after the cardioversion procedure. Depending on your overall risk of stroke, your doctor may ask you to continue taking a blood-thinning medicine for the rest of your life. Complications of external electrical cardioversion, although very rare, are: Stroke, Hemobolia, Bradycardia.

The loop recorder implant is useful in the presence of symptoms and/or suspected arrhythmic events. It is particularly useful when the suspected arrhythmia (especially if asymptomatic) or symptoms occur rarely and are therefore not recordable with other systems such as cardiac Holter monitors. What is a loop recorder? The loop recorder is a small device consisting of a battery and an electronic circuit, which allows the heartbeat to be recorded without inserting catheters into the heart. How is it implanted? The loop recorder implant is performed under local anesthesia. Through a skin incision, the loop recorder is inserted under the skin and the small wound is closed with a few stitches. After the time necessary to obtain the clinical diagnosis or when the battery runs out, the device is removed. Removal requires an incision in the skin, extraction of the device and subsequent closure of the skin with absorbable stitches. Risk The risk of loop-recorder implantation/explantation is generally very low. Complications that may occur include hematoma and infections at the implant site.

Every single heartbeat is determined by a muscle contraction activated by an electrical impulse. The first electrical signal originates from the heart's natural pacemaker, the Sinoatrial Node, made up of electrically active cells and located in the upper part of the right atrium. This node regularly emits electrical signals that spread to the upper chambers of the heart (Atria). The impulses then travel through an electrical bridge, the Atrioventricular Node, to the lower chambers of the heart (Ventricles). A disturbance somewhere in this electrical signal path can alter the regular beating of the heart. Fortunately, there are Pacemakers, which can replace the heart's electrical system, if necessary. What is a permanent Pacemaker? A pacemaker is a small device, usually implanted under the skin in the subclavian area. It consists of a battery and an electronic circuit, which produces electrical stimuli suitable for making the heart contract. The electrical impulses are transmitted to the heart through thin and resistant electrical wires, the electrocatheters. Through these catheters, the pacemaker is able not only to stimulate the heart, but also to record the electrical activity of the heart, so as to intervene only when necessary. There are different types of pacemakers with different characteristics and stimulation modes, programmable from the outside and chosen by the doctor based on the patient's needs. Precautions for pacemaker wearers: Sports that cause physical contact can damage the pacemaker. Magnetic Resonance Imaging works with strong magnets (but currently almost all types of pacemakers, if implanted with suitable electrocatheters, are compatible with magnetic resonance imaging. If you plan to undergo this test, remember to tell your doctor that you have a pacemaker! Security systems such as those in airports can cause problems with the pacemaker only if you remain under the magnetic field for a long time. Passing through the magnetic door even several times does not cause problems. However, patients with pacemakers should avoid standing there. Microwave ovens, cell phones and electric blankets do not interfere with the pacemaker. The pacemaker has its own battery. The battery charge level is checked periodically. The battery has a variable life, depending on various factors (percentage of stimulation and energy energy needed for stimulation), on average 8 years and cannot be recharged. If the battery needs to be changed, the pacemaker is replaced, a procedure similar to the implant but shorter and lower risk, since the catheters are not replaced. Types of Pacemakers There are three types of pacemakers that serve different purposes Single Chamber Pacemaker – in this pacemaker, only one electrode is inserted into one chamber of the heart. Sometimes it is inserted into the upper chamber (atrium), other times into the lower chamber (ventricle). Dual Chamber Pacemaker – in this pacemaker, the electrodes are inserted into two chambers, one in the atrium and the other in the ventricle, and they stimulate both chambers. This better reproduces the natural electrical activity of the heart. This type of pacemaker coordinates the function of the atria and ventricles and reduces the incidence of atrial fibrillation and cerebral ischemia. Rate-Responsive Pacemaker – these pacemakers have sensors that automatically change the stimulation rate based on the patient's physical activity.

What are the advantages of the wireless pacemaker for the patient? This technology completely changes the patient's point of view. It involves a considerable reduction in implantation times, hospitalization times and risks associated with the operation. Furthermore, since the patient does not have any scars, no subcutaneous pockets and does not feel any device under the skin and has an externally invisible device, he no longer experiences the fear of being a heart patient and the psychological impact is extraordinary. In fact, we go from a pacemaker wearer to a patient who has a device that he does not feel at all and who already has fewer limitations in terms of physical activity immediately after the implant because, being all inside the heart, it is more protected than a traditional pacemaker. Implantation technique The new wireless pacemaker contains the processor, battery and electrodes and is introduced using a completely innovative technique: no longer externally to the heart after an incision, subcutaneous pocket and connection to catheters, but rather introduced directly through the venous system using special introducer catheters and fixed directly into the heart at the level of the right interventricular septum. In practice, a minimally invasive procedure. Discharge is usually carried out within 24-48 hours of implantation. The procedure is performed under local anesthesia and lasts about 30 minutes. The non-surgical implantation method and the absence of catheters almost completely eliminate the risk of infections and device malfunctions. Which patients is the wireless pacemaker indicated for? Unlike traditional systems, which can electrically stimulate the entire heart (atrium and ventricle), the new wireless pacemakers are able to act on only one cardiac chamber (the ventricle), therefore not all patients are currently eligible for the new application. The wireless pacemaker is designed exclusively for use in the right ventricle and is intended for those patients who require single-chamber ventricular pacing according to current guidelines, i.e. patients with slow atrial fibrillation and patients with intermittent blocks and bradycardias.

Il defibrillatore automatico impiantabile (detto anche ICD) è un apparecchio molto sofisticato che serve a trattare le aritmie ventricolari maligne. Si tratta di un’invenzione relativamente recente, infatti viene utilizzato nella pratica clinica da circa vent’anni. È un piccolo dispositivo elettronico che osserva costantemente tutti i battiti del cuore ed interviene quando rileva un’aritmia grave. In base alle impostazioni programmate dal cardiologo il dispositivo eroga una o più terapie elettriche eseguendo una stimolazione oppure una scarica elettrica (detta anche DC Shock) proprio come i normali defibrillatori esterni presenti negli Ospedali (e come probabilmente tutti hanno visto in televisione nelle serie di ambiente medico). La scarica elettrica è in grado di interrompere anche la più grave aritmia cardiaca (la Fibrillazione Ventricolare) e quindi può salvare la vita al paziente. Il dispositivo è anche in grado di stimolare il cuore quando questo non è in grado di farlo spontaneamente, proprio come un normale pacemaker. Il sistema è composto, di uno o più fili elettrici posizionati nel cuore (elettrocateteri) che trasportano il segnale elettrico dal cuore al defibrillatore e viceversa; gli elettrocateteri sono collegati al defibrillatore vero e proprio che viene posizionato sottocute sul torace del paziente. L’ICD è indicato nei pazienti con aritmie maligne e serve a prevenire la morte improvvisa. I pazienti candidati ad impiantare un tale dispositivo sono coloro che: hanno presentato una aritmia ventricolare o un arresto cardiaco, presentano, per le loro caratteristiche e la loro patologia, un elevato rischio di poter avere una aritmia ventricolare od un arresto cardiaco, come nei pazienti con -frazione di eiezione minore di 35-40%. La frazione di eiezione (F.E.) è la proporzione di sangue pompata dal cuore per ogni battito. Un cuore normale pompa un pò più della metà del suo volume con ogni battito, così che la F.E. normale è maggiore del 55%. Pazienti ad alto rischio per morte improvvisa a causa di una malattia di cuore ereditaria. Un Cardiologo specialista dei disturbi del ritmo (Elettrofisiologo) dovrebbe valutare l’indicazione per l’impianto di un defibrillatore In presenza di una aritmia il dispositivo può intervenire con varie modalità programmate dal Medico a seconda delle necessità del paziente. Stimolazione antitachicardica: se l’aritmia è rapida ma non troppo, il dispositivo può erogare una serie di stimoli non dolorosi ed ad alta frequenza per cercare di interromperla. Defibrillazione: per altri tipi di aritmia l’unico modo per tentare di interrompere l’aritmia è erogare uno shock elettrico ad alta energia. La maggior parte dei pazienti sviene o perde conoscenza durante queste aritmie per cui non avverte la scarica. Quelli che non svengono avvertono un dolore improvviso ma di breve durata al centro del petto. Stimolazione antibradicardica: il sistema stimola il cuore quando questo non è in grado di farlo spontaneamente, proprio come un normale pacemaker. Solitamente il paziente non avverte questo tipo di stimolazione, così come avviene nei pazienti portatori di pacemaker. I controlli E’ necessario che il paziente portatore di ICD sia sottoposto a periodici controlli (in genere ogni sei mesi) per verificare il corretto funzionamento del dispositivo ed il livello di carica delle batterie. Il Cardiologo-elettrofisiologo stabilirà le modalità ed il calendario dei controlli in base alle necessità del paziente. In caso di intervento del dispositivo non è necessario che il paziente si allarmi: con ogni probabilità l’ICD è intervenuto per interrompere una aritmia ed ha salvato la vita al paziente stesso. Se si è trattato di 1 solo intervento ed il paziente non presenta sintomi particolari, è opportuno che contatti il Centro presso cui è seguito ed esegua un controllo entro 48 ore; il dispositivo fornirà al cardiologo le informazioni relative all’intervento, permettendo di verificarne l’adeguatezza ed il corretto funzionamento. Il defibrillatore ha anche una memoria che conserva la registrazione dell’Elettrocardiogramma dei momenti in cui si verifica un’alterazione del ritmo. Con queste informazioni, l’Elettrofisiologo (cardiologo specialista dei disturbi del ritmo) può studiare l’attività elettrica del cuore e approfondire i sintomi riferiti dal paziente. Se si verificano interventi ripetuti e se il paziente avverte sintomi importanti oppure se avverte un’aritmia e l’ICD non interviene, è opportuno che venga controllato presso il più vicino Ospedale, in quanto il dispositivo potrebbe funzionare in modo inappropriato o potrebbe essere cambiata la situazione della sua malattia cardiaca. La sostituzione del generatore Quando il livello di carica della batteria (controllato ai periodici controlli sempre più ravvicinati man mano che la batteria si avvicina alla fase di esaurimento) raggiungerà un determinato livello denominato ERI, il cardiologo-aritmologo stabilirà quando eseguire la sostituzione dell’ICD con un nuovo dispositivo. Tale intervento è più semplice dell’impianto in quanto si utilizzano i cateteri precedentemente impiantati; è pertanto necessario semplicemente aprire la tasca di alloggiamento del pacemaker, sconnettere il generatore e sostituirlo con uno nuovo.

A subcutaneous defibrillator is a medical device designed to prevent sudden cardiac death. Unlike a transvenous (conventional) ICD, in which the leads are inserted into the heart through a vein and connected to the heart wall, the Subcutaneous ICD lead is placed under the skin rather than in the heart, leaving the heart and veins intact. The device is inserted under the skin in the axillary region and the electrode is also inserted under the skin in the sternal region of the chest, anteriorly. Unlike transvenous implants of conventional ICDs, subcutaneous defibrillators have significantly lower risks of complications and the operation for their implantation is also less invasive. The subcutaneous defibrillator is an automatic device that is able to autonomously recognize anomalies in the heartbeat and when it detects a dangerously accelerated heart rhythm, it releases life-saving electrical discharges (shocks) to restore its normal rhythm PROS OF THE Subcutaneous ICD: it provides reliable protection against sudden death by leaving the heart and blood vessels intact. This avoids typical complications, such as systemic infections and the need to remove or extract the electrocatheters in the heart due to wear, breakage or infections. Fewer physical limitations: despite its size, the Subcutaneous ICD box is in fact larger than that of a transvenous ICD, the Subcutaneous ICD should not limit movements (of the arm) since it is not implanted under the clavicle. CONS OF THE Subcutaneous ICD: No pacing: Patients with bradycardia (a slow heart rate), recurrent spontaneous ventricular tachycardia reliably treated with anti-bradycardia pacing (ATP) generally benefit more from a traditional transvenous ICD with pacing function. The Subcutaneous ICD does not provide cardiac resynchronization therapy (CRT) In conclusion, the subcutaneous defibrillator is a valid therapeutic alternative only in some categories of patients at risk of sudden death.

These special pacemakers (PM) and defibrillators (ICD) allow in selected patients a particular mode of stimulation (called Biventricular or Cardiac Resynchronization therapy) that helps the heart to improve its pumping function. In the normal heart, the electrical conduction system spreads the impulse to the left ventricle in a highly organized sequence and the contraction that pumps blood out of the ventricle is very efficient. In some patients with heart failure caused by dilated cardiomyopathy (dilation of the heart), this electrical coordination is lost. Uncoordinated cardiac function leads to inefficient ejection of blood from the ventricles. In patients with heart failure who have a delay in electrical activation in the ventricular chambers, a condition called Bundle Branch Block, Biventricular stimulation coordinates the ventricular contraction (Cardiac Resynchronization). In these cases an additional catheter is used, so as to be able to stimulate both ventricles at the same time and make the contractile activity more homogeneous and synchronized. With Biventricular Pacing (Cardiac Resynchronization) the left and right ventricles are stimulated simultaneously, resynchronizing muscle contraction and improving the efficiency of a weak heart. This therapy has been shown to be effective in reducing the symptoms of Heart Failure and may increase the survival of these patients. – increase in daily activities that the patient can perform without having symptoms of heart failure. – improvement in quality of life. – changes in the anatomy of the heart that increase its function. – reduction in the need for hospitalization for heart failure.

bottom of page